
March 2008 www.stsc.hill.af.mil 13

Many software developers have a love-
hate relationship with requirements.

They love having a list of things they need
to engineer into the product they are
building, but they hate it when the require-
ments are unclear, inaccurate, self-contra-
dictory, or incomplete. They are right to
be concerned.

The price is high for teams that fail to
define requirements or that do it poorly.
Ill-defined requirements result in require-
ments defects, and the consequences of
these defects are ugly [1- 6]:
• Expensive rework and cost overruns.
• A poor quality product.
• Late delivery.
• Dissatisfied customers.
• Exhausted and demoralized team

members.
To reduce the risk of software project

failure and the costs associated with defec-
tive requirements, project teams must
address requirements early in software
development and they must define
requirements properly.

A Short Review of
Requirements
Before we get to the nitty-gritty of build-
ing requirements models, let us look at
some basic requirements concepts. User
requirements – the focus of this article –
are one of three types of requirements
(see Figure 1). The other two types are
those related to the mission or business
and those that describe the software itself.

Business requirements are statements of
the business rationale for the project.
These requirements grow out of the
vision for the product which, in turn, is
driven by mission (or business) goals and
objectives. The product’s vision statement
articulates a long-term view of what the
product will accomplish for its users. It
should include a statement of scope to
clarify which capabilities are and are not to
be provided by the product.

User requirements define the software
requirements from the user’s point of

view, describing the tasks users need to
accomplish with the product and the qual-
ity requirements of the software from the
user’s point of view. Users can be broadly
defined to include not only the people
who access the system but also inanimate
users such as hardware devices, databases,
and other systems. In the systems pro-
duced by most government organizations,
user requirements are articulated in their
concept of operations document.

Software requirements are detailed
descriptions of all the functional and non-
functional requirements the software must
fulfill to meet business and user needs.
Nonfunctional requirements include soft-
ware design constraints, external inter-
faces, and quality attributes such as per-
formance, security, installation ability,
availability, safety, reusability, and more [7].
Software requirements, which are docu-
mented in a software requirements specifi-
cation, establish an agreement between

technical specialists and business man-
agers on what the product must do.

The key activities in requirements
development are the following: elicitation,
analysis, specification, and validation [8]. In
elicitation, you identify the sources of
requirements and solicit requirements
from those sources. Requirements elicita-
tion relies on appropriate stakeholder
involvement, one of the most critical ele-
ments for project success [9]. The goal of
requirements analysis is to sufficiently
understand and define the requirements
so that stakeholders can prioritize and
allocate them to software. Specification
involves differentiating and documenting
functional and nonfunctional require-
ments and checking that the requirements
are documented unambiguously and com-
pletely. Validation examines the require-
ments to ensure that they satisfy user’s
needs.

Elicitation and analysis are crucial early

Good Practices for Developing User Requirements©

Defining user requirements – the needs of the stakeholders who directly interact with the system – is arguably one of the most dif-
ficult challenges in building complex systems. When it comes to defining user requirements for software, it is essential to use models
to document and analyze the requirements. This article provides a requirements model roadmap that helps software development
teams understand the effective use of requirements models. It also describes good practices for creating and using these models. 

Ellen Gottesdiener
EBG Consulting 

Why the project is being
undertaken.

Business
Requirements

User
Requirements

Software
Requirements

What users will be able to do
with the product.

What the developers
need to build.

Level 1:

Level 2:

Level 3:

Figure 1: Requirements Levels 

© 2007 Ellen Gottesdiener.



14 CROSSTALK The Journal of Defense Software Engineering March 2008

activities that require intense stakeholder
involvement. To analyze the requirements
you are eliciting, a key good practice is to
create requirements models (also referred to
as analysis models): user requirements repre-
sented by text (such as tables, lists, or
matrices), diagrams, or a combination of
text and graphical material [7]. These
models facilitate communications about
requirements with your stakeholders.

As you elicit requirements from stake-
holders and represent them using require-
ments models, you should verify your
models to ensure they are internally con-
sistent. You also need to prioritize your
requirements: With active user involve-
ment, you analyze the trade-offs among
requirements to establish their relative
importance [8].

The User Requirements
Model Roadmap
Now let us take a closer look at user
requirements models. The beauty of the
Requirements Model Road Map (Figure 2)
is that it shows the relationships between
the three types of requirements (business,
user, and software) and categorizes the
models you can use to represent each type.
Each model is designed to answer one of
the 5Ws + 1H questions: Who? What?
When? Why? How? [7].

(Note that the question Where? pro-
vides information mainly about nonfunc-
tional requirements. Although these are not
user requirements – which depict function-
al requirements – analysts asking Where?
during analysis will also discover a slice of
useful quality attributes such as perfor-
mance and usability).

In addition, the user requirements
model falls into three categories: scope,

high-level and detailed, and alternative
models. Some models (shown in italics in
Figure 2) are useful for analyzing the busi-
ness process, and others are useful for clar-
ifying project scope. Defining stakeholder
categories early in elicitation, for example,
identifies the people you should involve in
requirements modeling. High-level and
detailed models, such as use cases, a data
model, and business rules, can reveal
requirements defects such as errors, omis-
sions, and conflicts. Requirements analysts
and engineers can substitute alternative
models when the engineers better commu-
nicate requirements or fit the project cul-
ture.

Each requirements model represents
information at a different level of abstrac-
tion. A model such as a state diagram rep-
resents information at a high level of
abstraction, whereas detailed textual
requirements represent a low level of
abstraction. By stepping back from the
trees (textual requirements) to look at the
forest (a state diagram), the team can dis-
cover requirements defects not evident
when reviewing textual requirements alone.

Because the requirements models are
related, developing one model often leads
to deriving another. Examples of one
model driving another model are the fol-
lowing:
• Actors initiate use cases.
• Scenarios exemplify instances of use

cases.
• A use case acts upon data depicted in

the data model.
• A use case is governed by business

rules.
• Events trigger use cases.

In this way, you can use various routes
to harvest one model from another. This
approach helps you develop the models

quickly while at the same time verifying
the model’s completeness and correctness.

User Requirements Models 
Here, in alphabetical order, are brief
descriptions of the common user require-
ments models shown in the User
Requirements Models Road Map.

Activity Diagram
An activity diagram is a model that illus-
trates the flow of complex use cases using
Unified Modeling Language (UML) nota-
tion. This model is useful for showing use
case steps that have multiple extension
steps, and for visualizing use cases.

Actor Map
An actor map is a model that shows actor
interrelationships. An actor map supple-
ments the actor table and can also be used
as a starting point for identifying use cases.
Actors can be written on index cards (one
per index card) or drawn using the UML
notation. UML depicts actors in an actor
map as stick figures, as boxes (supplement-
ed by the notation “<<Actor>>”), or as a
combination (e.g., stick figures for human
actors, and boxes for nonhuman actors).

Actor Table
An actor table is a model that identifies and
classifies system users in terms of their
roles and responsibilities. This model helps
reveal missing system users and identifies
functional requirements as user goals (use
cases), and also management to clarify job
responsibilities.

Business Policies
Business policies are guidelines, standards,
and regulations that guide or constrain the
conduct of a business. Policies are the basis
for the decision making and knowledge that
are implemented in the software and in
manual processes. Whether imposed by an
outside agency or from within the company,
policies are used to streamline operations,
increase customer satisfaction and loyalty,
reduce risk, improve revenue, and adhere to
legal requirements. This model helps you
identify policies allocated to business peo-
ple, which in turn allows management to
prepare for software implementation by
updating procedures, guidelines, training,
forms, and other assets needed to enforce
the policies. Some policies are also allocat-
ed to software for implementation.

Business Rules
Business rules are text statements that
decompose business policies. Business
rules describe what defines, constrains, or
enables the software behavior. You use

Business
Requirements

1

Why the project is being
undertaken.

Business
Requirements

User
Requirements

Software
Requirements

What users will be able to do
with the product.

What the developers
need to build.

Project
Charter

Product
Vision

User Requirements

S
o
ft
w
ar
e
R
eq
u
ir
em
en
ts

D
es
ig
n
an
d
D
ev
el
o
p
m
en
t

Scope
High-Level

and
Detailed

Alternative
Models

* Business Model

Stakeholder
Categories

Actor Table
Optional:
Actor Map,
Dialog Map

Prototypes
Dialog Hierarchies

Personas
Who?

Relationship Map*
Glossary

Context Diagram
Data Model

Class Model
Data Dictionary
Data Tables

What?

Event-Response
Table

State Diagrams
State-Data
MatrixWhen?

Business
Policies

Business Rules
Decision Tables
Decision TreesWhy?

Process Map*
Use Cases

Optional:
Use Case Map,

Use Case Packages

Scenarios, Stories
Activity Diagrams,
Data Flow Diagrams

How?

Level 1:

Level 2:

Level 3:

Figure 2: User Requirements Model Roadmap

The Beginning



Good Practices for Developing User Requirements 

March 2008 www.stsc.hill.af.mil 15

business rules to specify the controls that
govern user requirements and to clarify
which rules should be enforced in software
and which will be allocated to business
people. Because business rules require
data, defining the rules will uncover need-
ed data. User requirements depend on the
complete and correct enforcement of
business rules.

Class Model
A class model is a diagram that shows the
classes to be used in a system. A class is the
generic definition of a collection of simi-
lar objects (persons, places, events, and
physical artifacts). You use a class model
in projects employing object-oriented
software development methods, tools, or
databases.

Context Diagram
A context diagram is a model that shows
the system in its environment with the
external entities (people and systems) that
provide and receive information or mate-
rials to and from the system. This model
helps stakeholders to quickly and simply
define the project’s scope and to focus on
what the system needs as inputs and pro-
vides as outputs. A context diagram helps
the team derive requirements models
(such as actors, use cases, and data model
information) and can reveal possible
scope creep problems as new external
entities are added.

Data Dictionary
A data dictionary is a model that provides
a description of the data attributes and
structures used in a system. This model is
a central place for defining each data ele-
ment and describing its data type, length,
and format. Some project teams use data
modeling tools that provide data dictio-
nary capabilities.

Data Flow Diagram (DFD)
A DFD is a model that shows related
inputs, processes, and outputs for process-
es that respond to external or temporal
events. Unlike use cases (which are orient-
ed toward actor goals), DFDs focus on
the data that goes in and out of each
process, taking an internal view of how
the system handles events.

Data Model
A data model shows the informational
needs of a system by illustrating the logi-
cal structure of data independent of the
data design or data storage mechanism.
You use a data model to identify, summa-
rize, and formalize the data attributes and
structures needed to satisfy functional

requirements and to create an easy-to-
maintain database. Data models help to
simplify design and programming and
help identify external data entities (other
systems that supply data to the software).

Data Table
A data table is a model in the form of a
table that contains sample data to elicit
and validate a data model or data dictio-
nary. Each row represents a set of occur-
rences in an entity, and each column rep-
resents sample attributes.

Decision Table
A decision table is a model that specifies
complex business rules concisely in an
easy-to-read tabular format. A decision
table documents all the possible condi-
tions and actions that need to be account-
ed for in business rules. Conditions are fac-
tors, data attributes, or sets of attributes
and are equivalent to the left side of atom-
ic business rules. Actions are conclusions,
decisions, or tasks and are equivalent to
the right side of atomic business rules.
Factors that must be evaluated form the
top rows of the table. Actions make up
the bottom rows of the table.

Decision Tree
A graphical alternative to a decision table,
a decision tree presents conditions and
actions in sequence. Each condition is
graphed with a decision symbol represent-
ing yes or no (or a true or false conclusion).
Branches to additional conditions are
drawn left to right. Actions are drawn
inside rectangles to the right of the branch
to which they apply.

Dialog Hierarchy
A dialog hierarchy is a model that shows
the dialogs in a system (or Web page) as a
hierarchy. It does not show transitions.

Dialog Map
A dialog map is a diagram that illustrates
the architecture of a system’s user inter-
face. It shows the visual elements that
users manipulate to step through tasks
when interacting with the system. Dialog
maps can be used to uncover missing or
erroneous use case paths and to validate
use cases, scenarios, or both in require-
ments walkthroughs with users.

Event-Response Table
An event-response table model identifies
each event (an input stimulus that triggers
the system to carry out a function) and the
event responses resulting from those
functions. An event-response table defines
the conditions to which the system must

respond, thereby defining the functional
requirements at a scope level. (Each event
requires a predictable response from the
system.) This model can also reveal needs
for external database access or file feeds.

Glossary
The glossary is a list of definitions of busi-
ness terms and concepts relevant to the
software being developed or enhanced.

Persona
The persona is a description of an actor
as a fictitious system user or archetype.
You describe each persona as if he or she
is a real person with personality, family,
work background, preferences, behavior
patterns, and personal attitudes. The focus
is on behavior patterns rather than job
descriptions. Each persona description is
written as a narrative flow of the person’s
day with added details about personality.
Four or five personas represent the roles
that use the system most often or are
most important to the functional require-
ments.

Process Map
A process map is a diagram that shows the
sequence of steps, inputs, and outputs
needed to handle a business process
across multiple functions, organizations,
or job roles. This model helps you identi-
fy the processes that are allocated to the
business (manual processes) and those
that will be allocated to software.

Prototype
A prototype is a partial or preliminary ver-
sion of a system created to explore or val-
idate requirements. Exploratory proto-
types can be mock-ups using paper, white-
boards, or software tools.

Relationship Map
A relationship map is a diagram that
shows the information and products that
are exchanged among external customers,
suppliers, and key functions in the organi-
zation. This model helps you understand
the organizational context of the project
by identifying affected business functions
and their inputs and outputs.

Scenario
A scenario is a description of a specific
occurrence of a path through a use case
(i.e., a use case instance). Example: A cus-
tomer calls to reschedule a job, adding
another service and requesting a repeat
customer discount.

Stakeholder Categories
Stakeholder categories are structured



arrangements of groups or individuals
who have a vested interest in the product
being developed. You use this model to
understand who has an interest in or who
has influence on the product, who will use
the software and its outputs, and who the
product will affect in some way. These
groups and individuals will need to be
kept informed about requirements
progress, conflicts, changes, and priorities.

State-Data Matrix
A state-data matrix model shows attribut-
es that are added or changed during a state
change. Each attribute is identified in the
data model and data dictionary.

State Diagram
A state diagram is a visual representation
of the life cycle of a data entity. Events
trigger changes in data, resulting in a new
state for that entity. Each state is a defined
condition of an entity, a hardware compo-
nent, or the entire system that requires
data, rules, and actions. A state diagram
can also show actions that occur in
response to state changes. You use a state
diagram to understand how events affect
data and to identify missing requirements
such as events, business rules, data attrib-
utes, and use case steps.

Story
A story is a text description of a path
through a use case that users typically doc-
ument. Stories replace use cases and sce-
narios when you are planning releases for
agile projects. Stories are essentially
detailed scenarios, but each story is judged
by developers to require less than two
weeks to develop. When combined with
acceptance tests, stories are roughly equiv-
alent to use cases.

Use Case
The use case describes in abstract terms
how actors use the system to accomplish
goals. Each use case is a logical piece of
user functionality that can be initiated by an
actor and described from the actor’s point
of view in a technology-neutral manner.
Use cases summarize a set of related sce-

narios. The purpose of use cases is to
reveal functional requirements by clarifying
what users need to accomplish when inter-
acting with the system. Use cases are a nat-
ural way to organize functional require-
ments and can be easier for users to under-
stand and verify than textual functional
requirements statements.

Use Case Map
The use case map is a model that illus-
trates the work flow of use cases. Each
use case map represents a set of highly
cohesive use cases sharing the same data,
often triggered by the same events or ini-
tiated by the same actor.

Use Case Package
The use case package is a logical, cohesive
group of use cases that represents higher
level system functionality. You create a use
case package by combining use case maps
or grouping use cases. Most systems will
have multiple packages. You can use a
UML file folder notation to show each
package, and you can name each package
according to its functionality.

Good Practices for Modeling
User Requirements 
Following good requirements modeling
practices (see Good Practices for Modeling
User Requirements, Table 1) is the key to
successful development of user require-
ments. These practices accelerate model-
ing, engage stakeholders, and give you
high-quality requirements – ones that are
correct, complete, clear, consistent, and
relevant.

The first good practice is to represent
and agree on the project’s scope early in
requirements elicitation. Why? It has to do
with scope creep – the unrestrained
expansion of requirements as the project
proceeds. Scope creep is one of the great-
est risks in software development [6]. A
clear definition of product scope narrows
the project’s focus to enable better plan-
ning, better use of time, and better use of
resources. Moreover, scope-level models
establish a common language that team
members can use to communicate about

the requirements and help to articulate the
boundary between what is in and what is
not in scope for the product.

Another good practice, as mentioned
earlier, is to document your product using
multiple user requirements models. Each
model describes one aspect of a problem
the product will address. Thus, no single
model can describe all the requirements.
Furthermore, elements of one model
often link to elements of another, so one
model can be used to uncover related or
missing elements in another model.

It is also good to use both text and
graphics to represent user needs. Multiple
representations tap into different modes
of human thinking. Some people think
more precisely with words, and others
understand concepts more quickly via dia-
grams. Using both types of representa-
tions leverages these different thinking
modes. In addition, mixing text and
graphics makes requirements develop-
ment more interesting and engaging. It
provides variety and permits stakeholders
to understand their requirements from
more than one angle.

You should also select models that fit
the domain of your product. That is
because some models are better suited to
communicate requirements for certain
domains. For example,Whenmodels (such
as an event-response table and a state
machine diagram) are well suited to
dynamic domains – those that respond to
continually changing events to store data
and act on it based on its state at a point.

Another well-known good practice is
to develop your requirements iteratively.
Each iteration is a self-contained mini-
project in which you undertake a set of
activities – elicitation, analysis, specifica-
tion, and validation – resulting in a subset
of requirements. The rationale for this
practice is that user requirements seldom
remain unchanged for a long period. On
teams using agile methods, each iteration
also incorporates the work needed to
deliver the working software that satisfies
those requirements. In some domains,
requirements change faster than the sys-
tem or subsystem can be developed. In
addition, the cost of implementing
changes increases dramatically as the pro-
ject proceeds. Developing requirements in
an evolving manner is essential in reducing
these risks.

You can also use requirements models
to identify requirements defects. The
interconnections among the models help
to expose any inconsistencies in related
models. This self-checking accelerates the
team’s ability to uncover missing, erro-
neous, vague, or conflicting requirements.

The Beginning

16 CROSSTALK The Journal of Defense Software Engineering March 2008

1. Define, represent, and agree on the project’s scope early in requirements
elicitation.

2. Document your product using multiple user requirements models.
3. Select models that fit the domain of your system.
4. Develop requirements models iteratively.
5. Use requirements models to identify requirements defects.
6. Use models to communicate: Create simple, readable diagrams focused less

on beauty and more on understanding.
7. Conduct retrospectives as you iterate through requirements development.

Table 1: Summary: Good Practices for Modeling User Requirements



Good Practices for Developing User Requirements 

March 2008 www.stsc.hill.af.mil 17

When you are creating graphical mod-
els, it is crucial to create simple, readable
diagrams. The benefit of diagrams is that
they give you a way to quickly communi-
cate complex, controversial, or unclear
requirements. Thus, you should avoid
complex, hard-to-read diagrams. Draw
diagrams manually to begin with or use an
easy-to-learn drawing tool. Keep them
simple and easy to read. Focus on main-
taining accuracy and exposing unclear or
incorrect requirements – not beauty or
completeness.

The final good practice I want to men-
tion applies whether or not you are using
modeling: I always tell my clients to con-
duct short retrospectives at the end of
each requirements iteration. A retrospective
is a special meeting in which the team
explores what works, what does not work,
what can be learned from the just com-
pleted iteration, and what ways to adapt
their processes and techniques before
starting another iteration [10, 11].
Retrospectives allow for early learning and
correction and may be your team’s most
powerful tool for process improvement.

On Your Way
Software development teams enjoy access
to a world of tools and technologies, but
building truly successful software still
depends on team members gaining a deep
understanding of user needs. When your
team is developing a software product,
you will save time, money, and frustration
by using appropriate models to describe
and analyze the product’s user require-
ments.u

References
1. Reifer, Donald J. “Profiles of Level 5

CMMI Organizations.” CrossTalk
Jan. 2007.

2. Schwaber, Carey. “The Root of the
Problem: Poor Requirements.” IT
View Research Document. Forrester
Research, 2006 

3. Dabney, James B., and Gary Barber.
“Direct Return on Investment of
Software Independent Verification and
Validation: Methodology and Initial
Case Studies.” Assurance Technology
Symposium, June 2003 <http://
sarpresults.ivv.nasa.gov/ViewResearch
/24.jsp>.

4. Hooks, Ivy F., and Kristina A. Farry.
Customer-Centered Products: Creat-
ing Successful Products Through
Smart Requirements Management.
New York: Amacom, 2001.

5. Nelson, Mike, James Clark, and
Martha Ann Spurlock. “Curing the
Software Requirements and Cost

Estimating Blues.” The Defense
Acquisition University Program
Manager Magazine Nov.-Dec. 1999.

6. Jones, Capers. Patterns of Software
Systems Failure and Success. Boston,
MA: Thomson Computer Press, 1996.

7. Gottesdiener, Ellen. Software
Requirements Memory Jogger: A
Pocket Guide to Help Software and
Business Teams Develop and Manage
Requirements. Methuen, MA:
Goal/QPC, 2005.

8. Institute of Electrical & Electronics
Engineers (IEEE). “IEEE Software
Engineering Body of Knowledge.”
IEEE Computer Society, 2004
<www.swebok.org>.

9. Standish Group International.
“CHAOS Chronicles.” Standish
Group International, 2003.

10. Kerth, Norman L. “Project Retro-
spectives: A Handbook for Team
Reviews.” New York: Dorset House,
2001.

11. Gottesdiener, Ellen. “Team Retro-
spectives for Better Iteration Assess-
ment.” The Rational Edge Apr. 2003
<http://ebgconsulting.com/Pubs/
Articles/TeamRetrospectives-Gottes
diener.pdf>.

About the Author

Ellen Gottesdiener,
principal consultant, EBG
Consulting, helps get the
right requirements so
projects start smart and
deliver the right product

at the right time. Her book, “Require-
ments by Collaboration: Workshops for
Defining Needs” describes how to use
multiple models to elicit requirements in
collaborative workshops, and “The
Software Requirements Memory Jogger”
describes essentials for requirements
development and management. In addi-
tion to providing training, eLearning and
consulting services, she speaks at and
advises for industry conferences, writes
articles, and serves on the Expert Review
Board of the International Institute of
Business Analysis Business Analysis
Body of Knowledge.

EBG Consulting, Inc.
1424 Ironwood DR West
Carmel, IN 46033
Phone: (317) 844-3747
E-mail: ellen@ebgconsulting.com 

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA 

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:________________________________________________________________________

RANK/GRADE:_____________________________________________________

POSITION/TITLE:__________________________________________________

ORGANIZATION:_____________________________________________________

ADDRESS:________________________________________________________________

________________________________________________________________

BASE/CITY:____________________________________________________________

STATE:___________________________ZIP:___________________________________

PHONE:(_____)_______________________________________________________

FAX:(_____)_____________________________________________________________

E-MAIL:__________________________________________________________________

CHECK BOX(ES) TO REQUEST BACK ISSUES:

DEC2006 c REQUIREMENTS ENG.

JAN2007 c PUBLISHER’S CHOICE

FEB2007 c CMMI

MAR2007 c SOFTWARE SECURITY

APR2007 c AGILE DEVELOPMENT

MAY2007 c SOFTWARE ACQUISITION

JUNE2007 c COTS INTEGRATION

JULY2007 c NET-CENTRICITY

AUG2007 c STORIES OF CHANGE

SEPT2007 c SERVICE-ORIENTED ARCH.

OCT2007 c SYSTEMS ENGINEERING

NOV2007 c WORKING AS A TEAM

DEC2007 c SOFTWARE SUSTAINMENT

JAN2008 c TRAINING ANDEDUCATION

FEB2008 c SMALLPROJECTS,BIG ISSUES

To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.


